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We take this opportunity to clarify issues raised in the preceding Comment by Soskin and McClintock@Phys.
Rev. E.66, 013101~2002!#. In particular, we provide further details and results to motivate and explicate the
methodologies we have employed to investigate stochastic resonance in arrays of monostable elements.
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The preceding Comment by Soskin and McClintock@1#
expresses confusion over some of the notation and inter
tation of our demonstration@2# of multiple stochastic reso
nances in arrays of underdamped, monostable, nonlinea
cillators. We think the confusion arises mainly from th
disparate methods and backgrounds our groups bring to
phenomenon of monostable stochastic resonance~SR!. We
hope that our comments here will clarify how our rece
work @2# extends their original work@3# and how our meth-
odology relates to theirs.

Soskin and McClintock agree that our main result is
teresting and potentially important, but they are uncomfo
able with our methodology, even in the case of a single e
ment. The key issue is the definition and significance of
measure of the response of the oscillators. Our approac
monostablearray-enhanced SR is conditioned by our pr
work @4# with bistablearray-enhanced SR. We consider S
to occur whenever a system’s response—suitably define
exhibits a local maximum as a function of noise. In our n
merical experiments, we customarily quantify the respo
of a noisy, driven oscillator the same way we would in phy
cal experiments. We generate a long time seriesx@ t# of the
oscillator’s position, take its fast Fourier transformx̃@ f #, and
create a power spectral density or spectrumS@ f #}ux̃@ f #u2.
We average many such spectra and estimate the backgr
noise power by performing a local smooth fitB@ f # to the
averaged spectrum near—but excluding—the drive
quency. Finally, we compute the ratio of the signal power
the drive frequency to the background noise power at
drive frequency

R5
S@ f D#

B@ f D#
, ~1!

which we conventionally express in decibels as 10 log10R
and refer to as the signal-to-noise ratio or SNR.@A better
estimate of the SNR might involve integrating the area of
peak above the background, but experience has shown
Eq. ~1! is sufficient for our purposes.# It is this definition that
we employ in our discussion of noise-enhanced propaga
in Sec. V and Fig. 7 of Ref.@2#, which itself is an extension
of our previous work@5#.

As with physical experiments, our numerical experime
always assume a nonzero sampling time~or integration time
1063-651X/2002/66~1!/013102~3!/$20.00 66 0131
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step! dt and a finitetotal sampling timeDT ~per averaging
segment!. Because these times can affect the computed S
we are careful to keep them constant throughout any
series of experiments. We typically fixdt5TD/1024@2# and
DT5128TD , where the drive periodTD51/f D . The former
band limits our noise and the latter spoils the pure mo
chromaticity of our drive. We do not consider these to
serious limitations, because both white noise and monoc
matic drives are nonphysical idealizations. Pure white no
would require an infinitesimal time stepdt and an infinite
band limit ~or Nyquist frequency! f N51/(2dt); a pure
monochromatic drive, and its consequent diverging spec
spike, would require an infinite total sampling timeDT and
an infinitesimal frequency resolutiond f51/DT. Such condi-
tions never obtained in practice and, contrary to one of
concerns of the Comment, our measure of responseR never
diverges.

We have adapted these numerical techniques to the
of monostable oscillators. Figure 1 displays the compu

FIG. 1. The spectraS@ f # ~solid curves! of a single, noisy,
forced, damped monostable oscillator, for small and large no
variances, and for nonvanishing drive, consist of a large nat
frequency peak and a narrow drive peak on smooth backgrou
B@ f # ~dashed curves!. Parameters from Ref.@2# are m51, g
50.01,a51, b50.1, AD50.1, f D50.285.
©2002 The American Physical Society02-1
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spectra of a single monostable oscillator from Ref.@2#, for
both large and small noise variances2, and for nonvanishing
drive amplitude. Note how increasing noise variance cau
the large natural frequency peak to shift to higher freque
and overwhelm the narrow drive peak~located by the verti-
cal dashed lines!. The spectra can be thought of as pea
riding on top of a smooth background~indicated by the
curved dashed lines!. As in the bistable case, we measure t
system’s response by theR of Eq. ~1!, but in this case, we
estimate the background by performing aglobal smooth fit,

B@ f #5B@ f ;B0 , f 1/2#5
B0

11~ f / f 1/2!
4 , ~2!

where we choose the two parametersB0 and f 1/2 to match the
spectra at low and high frequencies. This two-parameter
designed to be consistent with Eqs.~2! and ~3! of Ref. @2#,
works well in practice forall of the noise variances we hav
considered, both small and large, as in Fig. 1.

This is a natural generalization of the technique we c
tomarily use to estimate the noise background in the cas
bistable SR. In that case, the spectrum typically consists
narrow drive peak dominating a smooth background, ther
allowing a local background fit. However, in the monostab
case, the natural frequency peaks often overwhelm the
row drive peaks, thereby necessitating aglobal background
fit.

FIG. 2. Two measures of the response of the oscillator,S@ f D#
and R5S@ f D#/B@ f D#, for several different drive amplitudes, in
cluding zero drive amplitude. Both exhibit local maxima at nea
the same noise variances, but theR maxima are more pronounced
The maxima for sufficiently small drive amplitudes are indist
guishable from the maxima for vanishing drive.
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We emphasize thatour results are robust with respect t
variations in the form of the background fit functions. For
example, in the monostable case, even the crude con
line fit B@ f #5B0 gives good results.~Division by the back-
ground removes therise in the spectrum with noise variance
thereby focusing attention on theshift in the natural fre-
quency peaks.!

Figure 2 displays bothS@ f D# andR as a function of noise
variances2, for a single oscillator, for vanishing and nonv
nishing drive amplitudes. Both measures of response exh
a local maximum as a function of noise as the natural f
quency peak shifts over the drive frequencyf D . However,
because the maximum inR is more pronounced than th
maximum in S@ f D#, we employR in studying the arrays.
Note how both the position and height of the maximum a
independentof the drive amplitude, at least for sufficientl
small amplitudes.

We understand the essence of monostable SR to be
noise-induced matching of the system’s natural frequen

FIG. 3. Away from resonance, for small noise variance, the
sponseR depends on the total sampling timeDT. However, near
resonance,R exhibits the same local maximum for a wide range
DT.

FIG. 4. Two measures of response, the susceptibility modu
uxu andR, for both isolated (N51) and coupled (N52) oscillators.
Both exhibit local maxima at the same noise variances, but thR
maxima are more pronounced.
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to a specific~drive! frequency. Since this frequency matchin
is independent of drive amplitude, for sufficiently small am
plitudes, and for reasons of simplicity, in Ref.@2#, wepresent
data only forR at vanishing drive amplitude~except for Fig.
7, which illustrates the related phenomenon of noi
enhanced propagation, and is explicitly for nonvanish
drive!. However, our research is based on an extensive se
of numerical simulations, only a small subset of which w
included in Ref.@2#. Much of these simulations, like those o
Fig. 2, involve nonvanishingdrive. They convince us tha
‘‘We can calculateR with vanishing drive amplitude becaus
R measures whether or not, and to what extent, anatural
frequency peakis at the drive frequency, and because t
frequency matching is the essential ingredient of monosta
SR’’ @2#. Nevertheless, conceptually, we do considerR to be
a measure of the response of the oscillator at typically sm
but nonvanishing drive amplitudes.

Figure 3 demonstrates the dependence ofR on the total
sampling timeDT. Away from resonance, for small nois
variance,R doubles every timeDT doubles~andd f51/DT
halves!. This is because the same finite drive power~mean
square amplitude! is concentrated in a frequency bin half
wide. However, near the resonance, the natural freque
peak overwhelms the finite spike at the drive frequency,
R becomes independent ofDT. Consequently, both the pos
tion and height of the local maximum~and hence the SR! are
robust with respect toDT. In fact, for any largeDT, we can
find a drive amplitudeAD sufficiently small so that the sys
tem exhibits a SR.

In the Comment, Soskin and McClintock emphasize a d
ferent measure of response, the complex generalized sus
ys
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tibility x of Eq. ~3! of Ref. @1# ~which also appears in thei
original work @3#!. Despite the fact that the integral expre
sion for the real part of the susceptibility has a simple p
on the real axis, its numerical estimation is straightforwa
given our computed spectrumS@ f #. When we do this, as in
Fig. 4, we find thatx exhibits local maxima at the same nois
variances asR. However, becauseR is simpler to compute,
and because its local maxima are more pronounced,
more useful to us. Note that since we are interested prima
in ‘‘where’’ things happen~so we can optimally tune the
noise and coupling of the array!, we do not need a measur
of response that is in any technical sense ‘‘proportional’’
the response.

The Comment also calls attention to a few misprints t
escaped our proofreading. In the captions to Figs. 4 an
SNR should be replaced withR. ~The relevant axes in thes
figures are correctly labeledR. We emphasize here that th
original work @3# and our numerical estimation of the SN
of Eq. ~5! of Ref. @1# confirm that, unlikeR, this SNR de-
creases monotonically for these monostable oscillators.! An
obvious factor of 2p is missing from the definitions of the
modal frequenciesf 0 and f 1 in Eqs. ~2! and ~3!. Further-
more, the multiplier ofk in the definition of the antisymmet
ric frequency f 1 should indeed be 2 rather than 3.~In the
antisymmetric mode, the equivalent springs between osc
tors have nodes at their midpoints that effectivelyhalvetheir
lengths anddoubletheir spring constants.!

Finally, we agree with both of the Comment’s closin
remarks: Manifestations of SR in arrays of zero-dispers
oscillators may be quite impressive, and multiple SRs m
be common in many higher dimensional nonlinear system
d
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