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We take this opportunity to clarify issues raised in the preceding Comment by Soskin and Mcdlrigsk
Rev. E.66, 013101(2002]. In particular, we provide further details and results to motivate and explicate the
methodologies we have employed to investigate stochastic resonance in arrays of monostable elements.
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The preceding Comment by Soskin and McClintddék  step dt and a finitetotal sampling timeAT (per averaging
expresses confusion over some of the notation and interprgegment Because these times can affect the computed SNR,
tation of our demonstratiof2] of multiple stochastic reso- we are careful to keep them constant throughout any one
nances in arrays of underdamped, monostable, nonlinear oseries of experiments. We typically fik=T/1024[2] and
cillators. We think the confusion arises mainly from the AT=128T,, where the drive periodp=1/fy. The former
disparate methods and backgrounds our groups bring to thsand limits our noise and the latter spoils the pure mono-
phenomenon of monostable stochastic resondB&y. We  chromaticity of our drive. We do not consider these to be
hope that our comments here will clarify how our recentserious limitations, because both white noise and monochro-
work [2] extends their original work3] and how our meth-  matic drives are nonphysical idealizations. Pure white noise
odology relates to theirs. would require an infinitesimal time stegit and an infinite

Soskin and McClintock agree that our main result is in-band limit (or Nyquist frequency fy=1/(2dt); a pure
teresting and potentially important, but they are uncomfortmonochromatic drive, and its consequent diverging spectral
able with our methodology, even in the case of a single elespike, would require an infinite total sampling tim& and
ment. The key issue is the definition and significance of ougn infinitesimal frequency resolutiaf=1/AT. Such condi-
measure of the response of the oscillators. Our approach tons never obtained in practice and, contrary to one of the
monostablearray-enhanced SR is conditioned by our priorconcerns of the Comment, our measure of respéhsever
work [4] with bistablearray-enhanced SR. We consider SRdiverges.
to occur whenever a system’s response—suitably defined— e have adapted these numerical techniques to the case

exhibits a local maximum as a function of noise. In our nu-of monostable oscillators. Figure 1 displays the computed
merical experiments, we customarily quantify the response

of a noisy, driven oscillator the same way we would in physi-
cal experiments. We generate a long time sexjg¢$ of the
oscillator’s position, take its fast Fourier transfokf |, and
create a power spectral density or spectrgjfi]«|X[f]|2.

We average many such spectra and estimate the background 102
noise power by performing a local smooth B{f] to the 10° 4
averaged spectrum near—but excluding—the drive fre- 102
guency. Finally, we compute the ratio of the signal power at S[f] 104 ]
the drive frequency to the background noise power at the P
drive frequency 108'
10
S fp] 107
=", 1) 1012
B[fp]
10-14_
which we conventionally express in decibels as 1QJBg 1079 :
and refer to as the signal-to-noise ratio or SNR.better 102 10_1' - N
estimate of the SNR might involve integrating the area of the £ 107 10! ;2 10

peak above the background, but experience has shown that

Eq. (1) is sufficient for our purposeklt is this definition that FIG. 1. The spectraS[f] (solid curves of a single, noisy,

we employ in our discussion of noise-enhanced propagatiofyrced, damped monostable oscillator, for small and large noise

in Sec. V and Fig. 7 of Ref2], which itself is an extension variances, and for nonvanishing drive, consist of a large natural

of our previous work5]. frequency peak and a narrow drive peak on smooth backgrounds
As with physical experiments, our numerical experimentsB[f] (dashed curvgs Parameters from Refl2] are m=1, y

always assume a nonzero sampling tifoeintegration time  =0.01,a=1, 8=0.1,Ap=0.1, f;=0.285.
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FIG. 3. Away from resonance, for small noise variance, the re-
R sponseR depends on the total sampling tindel. However, near
10 resonanceR exhibits the same local maximum for a wide range of
AT.
10" . .
We emphasize thaiur results are robust with respect to
variations in the form of the background fit functiorizor
10°4, . , , , . . , + example, in the monostable case, even the crude constant
102 10" 10° 10! 102(_52 10° 10* 10° 10° line fit B[f]=B, gives good resultgDivision by the back-

ground removes these in the spectrum with noise variance,
FIG. 2. Two measures of the response of the oscill@pf,]  thereby focusing attention on thehift in the natural fre-
and R=9[f]/B[fp], for several different drive amplitudes, in- quency peaks.
cluding zero drive amplitude. Both exhibit local maxima at nearly ~ Figure 2 displays botl§[ f5] andR as a function of noise
the same noise variances, but fRenaxima are more pronounced. variancegz, for a single oscillator, for vanishing and nonva-
The maxima for sufficiently small drive amplitudes are indistin- nishing drive amplitudes. Both measures of response exhibit
guishable from the maxima for vanishing drive. a local maximum as a function of noise as the natural fre-
quency peak shifts over the drive frequenfgy. However,
spectra of a single monostable oscillator from Réf, for  pecause the maximum iR is more pronounced than the
both large and small noise varianeg, and for nonvanishing maximum in S fp], we employR in studying the arrays.
drive amplitude. Note how increasing noise variance causeNote how both the position and height of the maximum are
the large natural frequency peak to shift to higher frequencyndependenbf the drive amplitude, at least for sufficiently
and overwhelm the narrow drive pedkcated by the verti-  small amplitudes.
cal dashed lings The spectra can be thought of as peaks We understand the essence of monostable SR to be the
riding on top of a smooth backgroun@ndicated by the noise-induced matching of the system’s natural frequencies
curved dashed lingsAs in the bistable case, we measure the
system’s response by tte of Eq. (1), but in this case, we
estimate the background by performingylabal smooth fit,
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where we choose the two parametBgsandf;,, to match the
spectra at low and high frequencies. This two-parameter fit,
designed to be consistent with Eq®) and (3) of Ref.[2],
works well in practice forll of the noise variances we have
considered, both small and large, as in Fig. 1.
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This is a natural generalization of the technique we cus-
tomarily use to estimate the noise background in the case o
bistable SR. In that case, the spectrum typically consists of ¢
narrow drive peak dominating a smooth background, thereby
allowing alocal background fit. However, in the monostable

row drive peaks, thereby necessitatinglabal background
fit.
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FIG. 4. Two measures of response, the susceptibility modulus
case, the natural frequency peaks often overwhelm the najg| andR, for both isolated = 1) and coupled|=2) oscillators.

Both exhibit local maxima at the same noise variances, buRthe
maxima are more pronounced.
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to a specifiqdrive) frequency. Since this frequency matching tibility y of Eq. (3) of Ref.[1] (which also appears in their
is independent of drive amplitude, for sufficiently small am- original work [3]). Despite the fact that the integral expres-
plitudes, and for reasons of simplicity, in RE2)], we present  sion for the real part of the susceptibility has a simple pole
data only forR at vanishing drive amplitudéexcept for Fig.  on the real axis, its numerical estimation is straightforward
7, which illustrates the related phenomenon of noisegiven our computed spectruj f]. When we do this, as in
enhanced propagation, and is explicitly for nonvanishingFig. 4, we find thajy exhibits local maxima at the same noise
drive). However, our research is based on an extensive seriegriances afk. However, becausR is simpler to compute,
of numerical simulations, only a small subset of which wasand because its local maxima are more pronounced, it is
included in Ref[2]. Much of these simulations, like those of more useful to us. Note that since we are interested primarily
Fig. 2, involve nonvanishingdrive. They convince us that in “where” things happen(so we can optimally tune the
“We can calculateR with vanishing drive amplitude because noise and coupling of the arrgywe do not need a measure
R measures whether or not, and to what extenhatural  of response that is in any technical sense “proportional” to
frequency pealis at the drive frequency, and because thisthe response.
frequency matching is the essential ingredient of monostable The Comment also calls attention to a few misprints that
SR [2]. Nevertheless, conceptually, we do consiBdp be  escaped our proofreading. In the captions to Figs. 4 and 5,
a measure of the response of the oscillator at typically smalBNR should be replaced witR. (The relevant axes in these
but nonvanishing drive amplitudes. figures are correctly labeled. We emphasize here that the
Figure 3 demonstrates the dependencé&afn the total original work [3] and our numerical estimation of the SNR
sampling timeAT. Away from resonance, for small noise of Eg. (5) of Ref.[1] confirm that, unlikeR, this SNR de-
variance,R doubles every tim@T doubles(anddf=1/AT creases monotonically for these monostable oscillgtés.
halves. This is because the same finite drive powmean obvious factor of 2r is missing from the definitions of the
square amplitudeis concentrated in a frequency bin half as modal frequencied, and f; in Egs. (2) and (3). Further-
wide. However, near the resonance, the natural frequenayore, the multiplier ofk in the definition of the antisymmet-
peak overwhelms the finite spike at the drive frequency, andic frequencyf; should indeed be 2 rather than @n the
R becomes independent AfT. Consequently, both the posi- antisymmetric mode, the equivalent springs between oscilla-
tion and height of the local maximugand hence the SRare  tors have nodes at their midpoints that effectiviehfvetheir
robust with respect ta T. In fact, for any largeAT, we can  lengths anddoubletheir spring constants.
find a drive amplitudeAp sufficiently small so that the sys- Finally, we agree with both of the Comment’s closing
tem exhibits a SR. remarks: Manifestations of SR in arrays of zero-dispersion
In the Comment, Soskin and McClintock emphasize a dif-oscillators may be quite impressive, and multiple SRs may
ferent measure of response, the complex generalized suscdpge common in many higher dimensional nonlinear systems.
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